(4x^2-5x)=(7x-10x^2)

Simple and best practice solution for (4x^2-5x)=(7x-10x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2-5x)=(7x-10x^2) equation:



(4x^2-5x)=(7x-10x^2)
We move all terms to the left:
(4x^2-5x)-((7x-10x^2))=0
We get rid of parentheses
-((7x-10x^2))+4x^2-5x=0
We calculate terms in parentheses: -((7x-10x^2)), so:
(7x-10x^2)
We get rid of parentheses
-10x^2+7x
Back to the equation:
-(-10x^2+7x)
We add all the numbers together, and all the variables
4x^2-(-10x^2+7x)-5x=0
We get rid of parentheses
4x^2+10x^2-7x-5x=0
We add all the numbers together, and all the variables
14x^2-12x=0
a = 14; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·14·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*14}=\frac{0}{28} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*14}=\frac{24}{28} =6/7 $

See similar equations:

| 3p-7=-1 | | 19n−16n=15 | | |x+14|=7 | | 7=w−14/9 | | 6x+x-3=8+9x-2x-5 | | ⅗x=18 | | (x-5)+19=6-16 | | 9m-27=-36 | | 5x–6=2x+30 | | 10x^+2x=9 | | 5050-25x0+2=2 | | 10.5=1/2x-83 | | 1/2^x+2=8^2x+1 | | x-8=125 | | x+8=125 | | 30+6p=7(p+6)-5  | | 90=x+(3x-24) | | 180=x+(3x-24) | | q÷8/9=4 | | X+10+3x+3x+18=180 | | 2=v/9 | | 4(x+6)−15=21 | | -3x+7x-9=4(x-6)-3 | | 10d-12=38 | | 6x-42=198 | | 2x-42=198 | | n÷6=9/10 | | n÷ 6 = 9/10 | | 3x+4x+-2=12 | | -7x+4=-10-14 | | d-8+10=15+4 | | 1/2(115-x)=40 |

Equations solver categories